Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Public Health ; 12: 1376513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601497

RESUMO

Intensive care units (ICUs) are specialized environments dedicated to the management of critically ill patients, who are particularly susceptible to drug-resistant bacteria. Among these, carbapenem-resistant Gram-negative bacteria (CR-GNB) pose a significant threat endangering the lives of ICU patients. Carbapenemase production is a key resistance mechanism in CR-GNB, with the transfer of resistance genes contributing to the extensive emergence of antimicrobial resistance (AMR). CR-GNB infections are widespread in ICUs, highlighting an urgent need for prevention and control measures to reduce mortality rates associated with CR-GNB transmission or infection. This review provides an overview of key aspects surrounding CR-GNB within ICUs. We examine the mechanisms of bacterial drug resistance, the resistance genes that frequently occur with CR-GNB infections in ICU, and the therapeutic options against carbapenemase genotypes. Additionally, we highlight crucial preventive measures to impede the transmission and spread of CR-GNB within ICUs, along with reviewing the advances made in the field of clinical predictive modeling research, which hold excellent potential for practical application.


Assuntos
Carbapenêmicos , Infecções por Bactérias Gram-Negativas , Humanos , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/microbiologia , Unidades de Terapia Intensiva
2.
J Transl Med ; 22(1): 308, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528541

RESUMO

BACKGROUND: Ulcerative colitisis (UC) classified as a form of inflammatory bowel diseases (IBD) characterized by chronic, nonspecific, and recurrent symptoms with a poor prognosis. Common clinical manifestations of UC include diarrhea, fecal bleeding, and abdominal pain. Even though anti-inflammatory drugs can help alleviate symptoms of IBD, their long-term use is limited due to potential side effects. Therefore, alternative approaches for the treatment and prevention of inflammation in UC are crucial. METHODS: This study investigated the synergistic mechanism of Lactobacillus plantarum SC-5 (SC-5) and tyrosol (TY) combination (TS) in murine colitis, specifically exploring their regulatory activity on the dextran sulfate sodium (DSS)-induced inflammatory pathways (NF-κB and MAPK) and key molecular targets (tight junction protein). The effectiveness of 1 week of treatment with SC-5, TY, or TS was evaluated in a DSS-induced colitis mice model by assessing colitis morbidity and colonic mucosal injury (n = 9). To validate these findings, fecal microbiota transplantation (FMT) was performed by inoculating DSS-treated mice with the microbiota of TS-administered mice (n = 9). RESULTS: The results demonstrated that all three treatments effectively reduced colitis morbidity and protected against DSS-induced UC. The combination treatment, TS, exhibited inhibitory effects on the DSS-induced activation of mitogen-activated protein kinase (MAPK) and negatively regulated NF-κB. Furthermore, TS maintained the integrity of the tight junction (TJ) structure by regulating the expression of zona-occludin-1 (ZO-1), Occludin, and Claudin-3 (p < 0.05). Analysis of the intestinal microbiota revealed significant differences, including a decrease in Proteus and an increase in Lactobacillus, Bifidobacterium, and Akkermansia, which supported the protective effect of TS (p < 0.05). An increase in the number of Aspergillus bacteria can cause inflammation in the intestines and lead to the formation of ulcers. Bifidobacterium and Lactobacillus can regulate the micro-ecological balance of the intestinal tract, replenish normal physiological bacteria and inhibit harmful intestinal bacteria, which can alleviate the symptoms of UC. The relative abundance of Akkermansia has been shown to be negatively associated with IBD. The FMT group exhibited alleviated colitis, excellent anti-inflammatory effects, improved colonic barrier integrity, and enrichment of bacteria such as Akkermansia (p < 0.05). These results further supported the gut microbiota-dependent mechanism of TS in ameliorating colonic inflammation. CONCLUSION: In conclusion, the TS demonstrated a remission of colitis and amelioration of colonic inflammation in a gut microbiota-dependent manner. The findings suggest that TS could be a potential natural medicine for the protection of UC health. The above results suggest that TS can be used as a potential therapeutic agent for the clinical regulation of UC.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Lactobacillus plantarum , Álcool Feniletílico/análogos & derivados , Simbióticos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Azeite de Oliva , NF-kappa B , Ocludina , Modelos Animais de Doenças , Colite/induzido quimicamente , Inflamação/complicações , Inflamação/tratamento farmacológico , Colo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL
3.
Pharm Biol ; 62(1): 222-232, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38357845

RESUMO

CONTEXT: Diabetic kidney disease (DKD) is a prominent complication arising from diabetic microangiopathy, and its prevalence and renal impact have placed it as the primary cause of end-stage renal disease. Traditional Chinese Medicine (TCM) has the distinct advantage of multifaceted and multilevel therapeutic attributes that show efficacy in improving clinical symptoms, reducing proteinuria, protecting renal function, and slowing DKD progression. Over recent decades, extensive research has explored the mechanisms of TCM for preventing and managing DKD, with substantial studies that endorse the therapeutic benefits of TCM compounds and single agents in the medical intervention of DKD. OBJECTIVE: This review lays the foundation for future evidence-based research efforts and provide a reference point for DKD investigation. METHODS: The relevant literature published in Chinese and English up to 30 June 2023, was sourced from PubMed, Cochrane Library, VIP Database for Chinese Technical Periodicals (VIP), Wanfang Data, CNKI, and China Biology Medicine disc (CBM). The process involved examining and summarizing research on TCM laboratory tests and clinical randomized controlled trials for DKD treatment. RESULTS AND CONCLUSIONS: The TCM intervention has shown the potential to inhibit the expression of inflammatory cytokines and various growth factors, lower blood glucose levels, and significantly affect insulin resistance, lipid metabolism, and improved renal function. Furthermore, the efficacy of TCM can be optimized by tailoring personalized treatment regimens based on the unique profiles of individual patients. We anticipate further rigorous and comprehensive clinical and foundational investigations into the mechanisms underlying the role of TCM in treating DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Medicina Tradicional Chinesa , Rim , China , Medicamentos de Ervas Chinesas/uso terapêutico , Diabetes Mellitus/tratamento farmacológico
4.
Front Genet ; 14: 1242711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693307

RESUMO

Voriconazole (VRZ) is a broad-spectrum antifungal medication widely used to treat invasive fungal infections (IFI). The administration dosage and blood concentration of VRZ are influenced by various factors, posing challenges for standardization and individualization of dose adjustments. On the one hand, VRZ is primarily metabolized by the liver, predominantly mediated by the cytochrome P450 (CYP) 2C19 enzyme. The genetic polymorphism of CYP2C19 significantly impacts the blood concentration of VRZ, particularly the trough concentration (Ctrough), thereby influencing the drug's efficacy and potentially causing adverse drug reactions (ADRs). Recent research has demonstrated that pharmacogenomics-based VRZ dose adjustments offer more accurate and individualized treatment strategies for individuals with hepatic insufficiency, with the possibility to enhance therapeutic outcomes and reduce ADRs. On the other hand, the security, pharmacokinetics, and dosing of VRZ in individuals with hepatic insufficiency remain unclear, making it challenging to attain optimal Ctrough in individuals with both hepatic insufficiency and IFI, resulting in suboptimal drug efficacy and severe ADRs. Therefore, when using VRZ to treat IFI, drug dosage adjustment based on individuals' genotypes and hepatic function is necessary. This review summarizes the research progress on the impact of genetic polymorphisms and hepatic insufficiency on VRZ dosage in IFI individuals, compares current international guidelines, elucidates the current application status of VRZ in individuals with hepatic insufficiency, and discusses the influence of CYP2C19, CYP3A4, CYP2C9, and ABCB1 genetic polymorphisms on VRZ dose adjustments and Ctrough at the pharmacogenomic level. Additionally, a comprehensive summary and analysis of existing studies' recommendations on VRZ dose adjustments based on CYP2C19 genetic polymorphisms and hepatic insufficiency are provided, offering a more comprehensive reference for dose selection and adjustments of VRZ in this patient population.

5.
Front Genet ; 14: 1187985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303950

RESUMO

COVID-19 is an infectious disease caused by SARS-CoV-2, with respiratory symptoms as primary manifestations. It can progress to severe illness, leading to respiratory failure and multiple organ dysfunction. Recovered patients may experience persistent neurological, respiratory, or cardiovascular symptoms. Mitigating the multi-organ complications of COVID-19 has been highlighted as a crucial part of fighting the epidemic. Ferroptosis is a type of cell death linked to altered iron metabolism, glutathione depletion, glutathione peroxidase 4 (GPX4) inactivation, and increased oxidative stress. Cell death can prevent virus replication, but uncontrolled cell death can also harm the body. COVID-19 patients with multi-organ complications often exhibit factors related to ferroptosis, suggesting a possible connection. Ferroptosis inhibitors can resist SARS-CoV-2 infection from damaging vital organs and potentially reduce COVID-19 complications. In this paper, we outline the molecular mechanisms of ferroptosis and, based on this, discuss multi-organ complications in COVID-19, then explore the potential of ferroptosis inhibitors as a supplementary intervention for COVID-19. This paper will provide a reference for the possible treatment of SARS-CoV-2 infected disease to reduce the severity of COVID-19 and its subsequent impact.

6.
Curr Cancer Drug Targets ; 22(3): 257-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34994328

RESUMO

BACKGROUND: Increased CCKBR expression density or frequency has been reported in many neoplasms. OBJECTIVE: We aimed to investigate whether CCKBR drives the growth of gastric cancer (GC) and its potential as a therapeutic target of immunotoxins. METHODS: A lentiviral interference system was used to generate CCKBR-knockdown gastric cancer cells. Cell Counting Kit-8 and clonogenic assays were used to evaluate cell proliferation. Woundhealing and cell invasion assays were performed to evaluate cell mobility. Cell cycle was analyzed by flow cytometry. Tumor growth in vivo was investigated using a heterologous tumor transplantation model in nude mice. In addition, we generated the immunotoxin FQ17P and evaluated the combining capacity and tumor cytotoxicity of FQ17P in vitro. RESULTS: Stable downregulation of CCKBR expression resulted in reduced proliferation, migration and invasion of BGC-823 and SGC-7901 cells. The impact of CCKBR on gastric cancer cells was further verified through CCKBR overexpression studies. Downregulation of CCKBR expression also inhibited the growth of gastric tumors in vivo. Furthermore, FQ17P killed CCKBR-overexpressing GC cells by specifically binding to CCKBR on the tumor cell surface. CONCLUSION: The CCKBR protein drives the growth, migration, and invasion of gastric cancer cells, and it might be a promising target for immunotoxin therapy based on its aberrant expression, functional binding interactions with gastrin, and subsequent internalization.


Assuntos
Imunotoxinas , Receptor de Colecistocinina B , Neoplasias Gástricas , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Xenoenxertos , Humanos , Imunotoxinas/farmacologia , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Invasividade Neoplásica , Receptor de Colecistocinina B/genética , Receptor de Colecistocinina B/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
7.
Curr Issues Mol Biol ; 43(3): 1529-1547, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34698109

RESUMO

Melanocortin 1 receptor (MC1R) is thought to be a marker of poor prognosis and a potential target for the treatment of melanoma. Studies have found that MC1R promotes several tumor behaviors, including cell proliferation and differentiation, pigment formation, and genome damage repair. Some single-nucleotide polymorphisms (SNPs) of MC1R are involved in the occurrence and development of melanoma. A few studies have reported a relationship between MC1R and colorectal cancer (CRC). In this research, our objective was to examine MC1R expression and MC1R SNPs and investigate their correlation with the clinicopathological features of human CRC tissues. We evaluated MC1R mRNA expression by performing bioinformatic analyses on human CRC expression datasets. We used Western blotting and RT-qPCR to compare MC1R expression in CRC tissues with that in normal tissues, and MC1R SNPs in CRC tissues were detected by PCR-direct sequencing (DS). The expression of MC1R was significantly decreased in CRC tissues compared with normal tissue, and its expression was negatively associated with P53 expression, MLH1 expression, and PMS2 expression, and high MC1R expression was significantly associated with microsatellite instability (MSI). MC1R SNPs were also associated with the clinicopathological characteristics of CRC; for example, the rs2228479 locus genotype was correlated with Ki67 status, and the rs885479 locus genotype was correlated with age and T stage. In conclusion, MC1R plays a crucial role in the progression of CRC and may be a marker of poor prognosis in CRC.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Regulação Neoplásica da Expressão Gênica , Instabilidade de Microssatélites , Receptor Tipo 1 de Melanocortina/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Estadiamento de Neoplasias , Polimorfismo de Nucleotídeo Único , Prognóstico , Mapeamento de Interação de Proteínas , Receptor Tipo 1 de Melanocortina/metabolismo , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fluxo de Trabalho
8.
Mol Pharm ; 18(6): 2285-2297, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33998814

RESUMO

Cholecystokinin-2 receptor (CCK2R) has been proven to be a specific biomarker for colorectal malignancies. Immunotoxins are a valuable class of immunotherapy agents consisting of a targeting element and a bacterial or plant toxin. Previous work demonstrated that targeting CCK2R is a good therapeutic strategy for the treatment of colorectal cancer (CRC). In the present study, we developed a new version of CCK2R-targeting immunotoxin GD9P using a targeted peptide, GD9, as the binding motif and a truncated Pseudomonas exotoxin A (PE38) as the cytokiller. BALB/c nude mice were treated with different doses of GD9P, and pharmacodynamics, pharmacokinetic, and toxicological data were obtained throughout this study. Compared to the parental immunotoxin rCCK8PE38, GD9P exhibited about 1.5-fold yield, higher fluorescence intensity, and increased antitumor activity against human CRC in vitro and in vivo. The IC50 values of GD9P in vitro ranged from 1.61 to 4.55 nM. Pharmacokinetic studies were conducted in mice with a T1/2 of 69.315 min. When tumor-bearing nude mice were treated with GD9P at doses ≥2 mg/kg for five doses, a rapid shrinkage in tumor volume and, in some cases, complete remission was observed. A preliminary safety evaluation demonstrated a good safety profile of GD9P as a Pseudomonas exotoxin A-based immunotherapy. The therapy in combination with oxaliplatin can increase the antitumor efficacy and reduce the toxic side effects caused by chemotherapy. In conclusion, the data support the use of GD9P as a promising immunotherapy targeting CCK2R-expressing colorectal malignancies.


Assuntos
ADP Ribose Transferases/farmacologia , Antineoplásicos/farmacologia , Toxinas Bacterianas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Exotoxinas/farmacologia , Receptor de Colecistocinina B/antagonistas & inibidores , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Virulência/farmacologia , ADP Ribose Transferases/genética , ADP Ribose Transferases/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Toxinas Bacterianas/genética , Toxinas Bacterianas/uso terapêutico , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Exotoxinas/genética , Exotoxinas/uso terapêutico , Humanos , Camundongos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/uso terapêutico , Distribuição Tecidual , Testes de Toxicidade Aguda , Fatores de Virulência/genética , Fatores de Virulência/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Sensors (Basel) ; 20(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824352

RESUMO

Currently, various agricultural image classification tasks are carried out on high-resolution images. However, in some cases, we cannot get enough high-resolution images for classification, which significantly affects classification performance. In this paper, we design a crop disease classification network based on Enhanced Super-Resolution Generative adversarial networks (ESRGAN) when only an insufficient number of low-resolution target images are available. First, ESRGAN is used to recover super-resolution crop images from low-resolution images. Transfer learning is applied in model training to compensate for the lack of training samples. Then, we test the performance of the generated super-resolution images in crop disease classification task. Extensive experiments show that using the fine-tuned ESRGAN model can recover realistic crop information and improve the accuracy of crop disease classification, compared with the other four image super-resolution methods.


Assuntos
Produtos Agrícolas , Doenças das Plantas , Agricultura
10.
J Dairy Sci ; 103(9): 8251-8256, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32684459

RESUMO

For a variety of reasons, dairy sector indebtedness has increased in recent years. However, it is not clear whether increased debt boosts or damages the economic performance of dairy farms. This paper provides empirical evidence by exploring the effects of farm debt measured by debt-to-asset ratio on dairy productivity and profitability, using the New Zealand DairyBase data of 2,637 dairy farms for a 10-yr period 2005 to 2014. A fixed-effects panel data model is utilized for the empirical analysis. The findings show that farm debt is significantly and negatively associated with both dairy productivity and profitability. We find that dairy productivity is positively determined by production intensification, irrigation intensity, milking frequency, cattle breeds and stocking rate, whereas dairy profitability is positively affected by milk price, business type, milking frequency, and stocking rate. Further analyses reveal that the debt ratio significantly decreases both the technical efficiency of dairy farms and return on assets; a high debt ratio increased dairy productivity between 2005 and 2009, whereas it decreased dairy productivity between 2011 and 2014; the effects of the debt ratio on dairy profitability vary over time. The analysis for a 10-yr balanced panel data (250 farms) shows that debt ratio does not significantly affect both dairy productivity and profitability, which suggests that the presence of farm-specific attributes such as farm life cycle and managerial ability of dairy farmers may also affect the debt ratio and through this farm performance.


Assuntos
Bovinos , Indústria de Laticínios , Fazendas/economia , Animais , Indústria de Laticínios/economia , Indústria de Laticínios/estatística & dados numéricos , Fazendas/estatística & dados numéricos , Nova Zelândia
11.
Artigo em Inglês | MEDLINE | ID: mdl-31117300

RESUMO

Although chemical pesticide use has increased agricultural productivity, it has caused adverse effects on human health and the environment. For example, pesticide exposure may result in the incidence of a human health condition (e.g., heart disease, immune disorders, cancer, and damaged skin) and it can pollute air, water, and soil conditions and damage biodiversity. Mitigating the negative externalities associated with pesticide use is essential to improve human health and environmental performance. In this study, we are trying to explore whether farm machine use reduces pesticide expenditure by analyzing farm household survey data collected from 493 maize farmers in China. An endogenous switching regression model is employed to address the sample selection bias issue associated with voluntary farm machine use. The empirical results reveal that farm machine use exerts a negative and statistically significant impact on pesticide expenditure. The findings highlight the important role of farm machines in helping reduce pesticide expenditure, which is, in turn, beneficial for improving human health conditions and environmental performance.


Assuntos
Agricultura/estatística & dados numéricos , Praguicidas/economia , Zea mays , Adulto , China , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade
12.
Eur J Pharmacol ; 650(1): 275-84, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-20854809

RESUMO

This study is designed to investigate the protection of tanshinone IIA (TSIIA) against atherosclerosis in apolipoprotein E deficient (ApoE(-/-)) mice and to explore the mechanisms by focusing on the expressions of scavenger receptors, scavenger receptor-A (SR-A) and CD36. The in vivo study demonstrated that TSIIA (10-90mg/kg) inhibited the atherosclerotic lesions, down-regulated the CD68 protein expression in lesion and decreased the contents of cholesterol in aortas of ApoE(-/-) mice. In addition, TSIIA reduced the serum levels of oxidized LDL (oxLDL) and down-regulated the mRNA expression of CD36, SR-A and peroxisome proliferator-activated receptor gamma (PPARγ) in aortas. The in vitro study showed that TSIIA (0.1-10µM) decreased cholesterol level and DiI-oxLDL uptake in mouse peritoneal macrophages treated with oxLDL (50µg/ml). In addition, TSIIA down-regulated the mRNA and protein expression of CD36 but not that of SR-A in oxLDL treated macrophages. TSIIA also down-regulated the mRNA expression of PPARγ in oxLDL treated macrophages. Furthermore, TSIIA reduced the mRNA expression of CD36 in macrophages treated with PPARγ agonist 15d-PGJ(2) (2µM) or troglitazone (50µM), whereas both 15d-PGJ(2) (0.5-1.5µM) and troglitazone (5-20µM) dose-dependently abolished the down-regulation of CD36 expression by TSIIA in oxLDL treated macrophages. These results suggest that TSIIA attenuates the atherosclerotic lesion in ApoE(-/-) mice, which might be attributed to the properties of both anti-oxidation and down-regulation of scavenger receptors. Furthermore, antagonism of PPARγ might be involved in the down-regulation of CD36 by TSIIA.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Regulação para Baixo/efeitos dos fármacos , Fenantrenos/farmacologia , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo , Abietanos , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Transporte Biológico/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Antígenos CD36/genética , Antígenos CD36/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colesterol/sangue , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/sangue , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Malondialdeído/sangue , Camundongos , PPAR gama/agonistas , PPAR gama/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...